dots bg

The Complete Artificial Intelligence and Data Science in English

Course Instructor Ramisha Rani K

₹55000.00 ₹60000.00 8% OFF

dots bg

Course Overview

Schedule of Classes

Course Curriculum

1 Subject

The Complete AI Course-English

156 Learning Materials

Week-0-Ground Work

0) Mind Preparation

Video
10:2

1) Professional Social Meida

Video
2:45

2) Linkedin-1

Video
6:27

3) Linkedin-2

Video
2:45

4) Linkedin-3

Video
3:45

5) Github-1

Video
1:23

6) Github-2

Video
6:15

6) Github-2

Video
6:15

7) How to write notes

Video
4:20

Week-1-Travell Plan

1) What is AI How its created end goal

Video
7:29

2) Where to Sell Ai Projects thumb rule to integrate Ai in any Department

Video
8:8

3) Comparison Between AI and Human

Video
2:56

4) Relationship Between Ai Machine Learning DL NLP TSA Data Science

Video
3:45

5) Man like AI Traditional Vs AI

Video
9:58

6) Traditional vs AI-2

Video
4:12

7) Thumb rule to make money over AI projects

Video
5:34

8) Heart of AI projects

Video
2:00

9) Real Time Applications

Video
6:46

10) Baby Step-1

Video
2:31

11) How to select domain for AI Projects

Video
5:18

12) Why Data Science

Video
1:33

13) Relationship between AI and Python

Video
1:56

14) Road Map to complete AI

Video
2:38

Week-2-Python

1) Python Tool

Video
7:28

2) Where to Download Anaconda

Video
3:41

3) How to open Jupyter notebook

Video
4:53

4) Introduction to Programming

Video
7:20

5) Concepts Print

Video
9:58

6) Print Name Error

Video
3:40

7) Print hands-0n

Video
1:13

8) Variable and Assignment

Video
6:58

9) Variable-Hands-on

Video
14:49

10) Rules to write Variable Name

Video
5:35

11) String

Video
1:23

12) How to write Efficient program

Video
10:9

13) Input statement

Video
7:48

14) Recall Session

Video
2:57

15) Control Structures

Video
7:43

16) If Statement

Video
9:13

17) if-else

Video
10:00

18) if-elif

Video
14:3

19) if-Thumbrule

Video
4:52

20) For Loop

Video
15:3

21) How to Finish Assignments

Video
9:13

22) OOPs

Video
3:26

23) Function-1

Video
3:40

24) Function-2

Video
8:51

25) Function-3

Video
6:37

26) Function-4

Video
7:17

27) Function-5

Video
5:14

28) Function Assignments

Video
1:31

29) Class-1

Video
4:3

30) Class-2

Video
5:58

31) Class-3

Video
10:7

32) Class Assignments

Video
058

Week3-Machine Learning-Regression

1) Problem Identification

Video
3:52

2) How to identify Supervised Learning

Video
6:54

3) How to identify Unsupervised Learning

Video
3:19

4) Difference btw supervised and unsupervised

Video
4:33

5) Semi Supervised Learning

Video
3:54

6) Supervised Classification and Regression

6) Supervised Classification and Regression

Video
2:44

7) Scenario Based Exmaple-1

Video
5:28

8) Scenario Based Example-2

Video
3:6

9) Problem Identification-Assignments

Video
1:44

10) Two Phases of Artificial Intelligence

Video
4:3

11) Model Creation Learning Phase-1

Video
7:24

12) Deployment Phase-2

Video
3:47

13) Algorithms

Video
1:41

14) Simple Linear Regression-1

Video
3:15

15) Problem Identification-SLR

Video
4:37

16) Detailed Explanation of Model creation

Video
10:2

17) Evaluation Metrics-SSE,SSR,SST

Video
4:42

18) R_Square Adjusted R_Square

Video
5:3

19) The purpose of Training and Test Set

Video
5:28

20) AI in HR-Req-Problem Identification

Video
8:00

21) Mapping Theory and Coding

Video
15:30

22) Hands-On Coding-1-Train-Test

Video
18:39

23) Hands-on Coding-2-Model Creation

Video
8:53

24) Hands-on-3-Evaluation Metric

Video
5:20

25) How to save model

Video
4:9

26) Part-2-How to save

Video
051

27) Hands-on Deployment

Video
6:13

28) Baby Step-2

Video
2:35

29) Multiple Linear Regression

Video
4:15

30) PS Ai in Business Intelligence

Video
3:57

31) Nominal and Ordinal

Video
9:32

32) Code Walkthrough

Video
2:7

33) Hands-on-MLR

Video
22:59

34) SVM

Video
14:10

35) Standard

Video
3:21

36) ML-Secret

Video
5:46

37) SVM-Hands-on

Video
21:39

38) Decision Tree

Video
12:3

39) Hands-on-Decision Tree

Video
4:44

40) Random Forest

Video
5:30

41) Hands-on-Random

Video
5:11

42) Assignment

Video
3:46

43) Boosting Algorithm

Video
11:38

44) How to install a library

Video
4:6

45) Cross Validation

Video
9:4

46) GridSearchCV

Video
24:15

Week-4-Machine Learning-Classification

1) Intro to Classification and problem statement

Video
13:39

2) Hands-on Walk through

Video
22:32

3) Confusion Matrix-1

Video
18:12

4) Confusion matrix-2

Video
23:36

5) Hands-on-DT, SVM

Video
14:34

6) Logistic Regression

Video
4:00

7) Logistic-Hands-on

Video
4:3

8) KNN

Video
5:21

9) KNN Hands-on

Video
5:19

10) Navie Bayes

Video
10:1

11) Hands-on-NB

Video
5:00

12) All Algorithms

Video
3:37

13) Grid Search Classification-1

Video
18:52

14) GridSearch-2

Video
4:43

15) Assignment-Classification

Video
1:53

16) Virtual Environment

Video
13:12

17) Virtual Creation

Video
10:47

Week-5- Machine Learning-Clustering

1) K-Means

Video
9:43

2) Problem Statement

Video
2:8

3) K-Means overview-hands-on

Video
24:42

4) Hands-on K-Means

Video
16:44

5) Agglomerative-1

Video
3:53

6) Agglomerative-2

Video
3:1

7) Clustering Assignment

Video
7:33

Week-6-Data Science- Univariate

1) Introduction to Data Science

Video
15:8

2) Inferential Analysis

Video
10:46

3) Application of Data Science

Video
8:55

4) Types of column

Video
8:41

5) Problem statement

Video
7:42

6) Hands-on QuanQual-1

Video
9:42

7) Hands-on QuanQual-2

Video
14:50

8) Faircopy

Video
16:22

9) Introduction to Univariate

Video
2:37

10) Central tendency-1

Video
6:45

11) Central tendency-2

Video
9:41

12) Central Tendency-3

Video
5:00

13) Hands-on CT-1

Video
5:17

14) Hands-on CT-2

Video
17:30

15) Percentile

Video
9:36

16) Hands-on-Percentile

Video
11:40

17) IQR

Video
12:54

18) Hands-on-IQR-1

Video
9:18

19) Hands-on-IQR-2

Video
16:16

20) Hands-on-IQR-3

Video
14:47

21) Frequecy

Video
8:52

22) Relative Frequency

Video
14:39

23) Variance and Standard Deviation

Video
10:48

24) Hands-on Variance and Std

Video
3:15

25) Skewness

Video
5:1

26) Hands-on Skewness

Video
3:16

27) Kurtosis

Video
3:10

28) Hands-on Kurtosis

Video
8:5

29) Skewness VS kurtosis

Video
2:4

30) Normal Distribution

Video
13:00

Course Instructor

tutor image

Ramisha Rani K

5 Courses   •   4030 Students